Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong-Hong Wen, Shu-Sheng Zhang,* Mao-Jie Li and Xue-Mei

 LiCollege of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.120$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N, N-Diphenyl-2-(quinolin-8-yloxy)acetamide monohydrate

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, all bond lengths and angles are within normal ranges. The dihedral angles formed by the two phenyl rings with the quinoline moiety are 61.40 (9) and $85.66(8)^{\circ}$. The crystal packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the solvent water molecule.

Comment

8-Hydroxyquinoline and its derivatives have found extensive application as analytical reagents, e.g. in absorption spectrophotometry, fluorimetry, solvent extraction and partition chromatography, due to their ability to form stable complexes with many metallic ions (Bratzel et al., 1972). Some 8hydroxyquinoline derivatives and their complexes with transition metals demonstrate antibacterial activity (Patel \& Patel, 1999). In continuation of our search for good extractants of metal ions, fluorescent materials and analytical reagents, we obtained the title compound, (I) (Fig. 1), the monohydrate of a new amide-based 8-hydroxyquinoline derivative, and we report its crystal structure here.

All bond lengths and angles in (I) (Table 1) are within normal ranges (Allen et al., 1987). The sum of the angles around atom N2 is 359.99°, implying a planar configuration. The dihedral angles formed by the two phenyl rings with the quinoline moiety are 61.40 (9) and $85.66(8)^{\circ}$. The dihedral angle between the two phenyl rings is $67.57(10)^{\circ}$.

The crystal packing (Fig. 2) of (I) is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) involving the solvent water molecule.

Experimental

N, N-Diphenyl-2-chloroacetamide was prepared by the reaction of diphenylamine and chloroacetyl chloride in the presence of triethylamine, according to the literature method of Wen et al. (2004). To a solution of 8 -hydroxyquinoline $(1.45 \mathrm{~g}, 10 \mathrm{mmol})$ in acetone

Received 28 April 2005 Accepted 13 May 2005 Online 21 May 2005
$(40 \mathrm{ml})$ were added 2 -chloro- N, N-diphenylacetamide $(2.45 \mathrm{~g}$, $10 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.52 \mathrm{~g}, 11 \mathrm{mmol})$ and $\mathrm{KI}(0.5 \mathrm{~g})$, and the resulting mixture was stirred at 333 K for 5 h . After cooling to room temperature, the mixture was washed three times with water and filtered. Colourless single crystals of (I) suitable for X-ray diffraction study were obtained by slow evaporation of a petroleum ether-ethyl acetate solution ($1: 2 \mathrm{v} / \mathrm{v}$) over a period of 7 d .

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$Z=2$
$M_{r}=372.41$	$D_{x}=1.265 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.1761(8) \AA$	Cell parameters from 1838
$b=9.5962(8) \AA$	reflections
$c=11.9113(10) \AA$	$\theta=2.4-24.9^{\circ}$
$\alpha=72.5260(10)^{\circ}$	$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=78.339(2)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=82.942(2)^{\circ}$	Column, colourless
$V=977.63(14) \AA^{\circ}$	$0.40 \times 0.20 \times 0.09 \mathrm{~mm}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.967, T_{\text {max }}=0.992$ 5557 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.120$
$S=1.04$
3773 reflections
261 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
A view of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.

Figure 2
A packing diagram for (I), showing the intermolecular hydrogen bonds (dashed lines), viewed approximately down the c axis.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This work was supported by the National Natural Science Foundation of China (grant Nos. 20275020 and 20475030) and the Project of the Educational Administration of Shandong Province (grant No. J04B12).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.

Brandenburg, K. (2000). DIAMOND. Release 2.1d. Crystal Impact GbR, Bonn, Germany.
Bratzel, M. P. Aaron, J. J., Winefordner, J. D., Schulman, S. G. \& Gershon, H. (1972). Anal. Chem. 44, 1240-1245.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

organic papers

Patel, A. K. \& Patel, V. M. (1999). Synth. React. Inorg. Met. Org. Chem. 29, 193-197.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL Version 5.10. Bruker AXS, Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wen, Y.-H., Zhang, S.-S., Liang, J. \& Li, X.-M. (2004). Acta Cryst. E60, o1702o1703.

